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Abstract
The magnetic ordering of a series of samples consisting of ultrathin Fe layers
embedded in Pd was investigated using the magneto-optical Kerr effect. The
samples consisted of a single Fe layer with nominal thickness 0.2 � dFe � 1.6
monolayers sandwiched between two 20 monolayer Pd layers. A dimensionality
crossover from two dimensions to three dimensions occurs as dFe is increased
from 0.4 to 1.0 monolayers. First-principles calculations were performed in
order to determine the magnetic profile, and we used a spin-wave quantum well
model for obtaining a qualitative description of the dimensionality crossover.
The results clearly prove the existence of a dimensionality crossover in the
induced magnetization, opening new routes for addressing the influence of
extension on order.

The dimensionality aspects of magnetic and structural phase transitions represent one of the
cornerstones of modern science. For magnetic systems, the spin dimensionality as well as
the spatial extension determines the universality class, giving rise to a myriad of ordering
phenomena on different length scales. Furthermore, there are transition regions not represented
by any universality class with corresponding critical exponents, but representing something in
between. For example, the thickness dependence of the critical exponents of thin magnetic films
exhibit such a transition, in which the exponents are continuously varying with the thickness
of the layers, from typical two-dimensional (2D) Ising (β = 0.125) to three-dimensional (3D)
Heisenberg (β ≈ 0.36) [1, 2] behaviour.

Experimental investigations of magnetic dimensionality are challenging, partly because of
the difficulties of making samples with the intended properties. For example, imperfections
such as atomic steps and other structural defects are always present in real samples. Even close
to ideally layer-by-layer grown samples have imperfections due to incomplete formation of
atomic layers, resulting in thickness variations as well as the presence of atomic steps. Atomic

0953-8984/07/246213+07$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/24/246213
mailto:bjorgvin.hjorvarsson@fysik.uu.se
http://stacks.iop.org/JPhysCM/19/246213


J. Phys.: Condens. Matter 19 (2007) 246213 M Pärnaste et al

steps can result in locally preferred directions of the magnetization [3], giving rise to almost
randomized anisotropy, influencing the order–disorder transition in an unpredictable way.
The thickness variation originating from the incomplete formation of atomic layers will also
inevitably give rise to a distribution with respect to the inherent ordering temperature. These
limitations are minimized for ultrathin magnetic layers sandwiched between layers of materials
with a long-range polarizability and high susceptibility. The idea is based on competition
between the length scales involved. When the range of the induced magnetization is much
larger than the length scale of the atomic imperfections, their influence will be negligible at
some distance from the defect. Hence, as long as the range of the induced moment is large
enough, near to perfect layered magnetization is conceivable.

The high magnetic susceptibility and long-range polarizability of Pd make it a suitable
candidate for these studies. The Fe-induced magnetic moment in bulk Pd is large, e.g., a
single Fe impurity in Pd polarizes a sphere of about 10 Å radius [4, 5] resulting in a total
magnetic moment of 9–12 μB per Fe atom [6, 4, 7]. When the (Fe) dopants increase in density,
a saturation of the Pd moment is observed [4]. The polarized region from a covered monolayer
(ML) of Fe in Pd extends as far as 20 Å [5], or ∼10 ML [8]. This range is large with respect
to imperfections at the atomic scale; hence, the influence of defects such as atomic steps is
expected to be strongly damped.

Here we present experimental and theoretical investigations of the magnetic ordering in
ultrathin Fe films sandwiched between two thicker Pd layers. We will discuss the influence of
the concentration of Fe on the ordering temperature and dwell on the extension of the induced
magnetization while addressing the dimensionality of the magnetic transition.

A series of ten samples was grown on MgO(100) substrates using DC magnetron
sputtering. The Pd(20 ML)/Fe(dFeML)/Pd(20 ML) structures were grown on 10 ML V seeding
layers, slightly above room temperature. The thickness of the Fe layers was controlled by the
timing of the deposition shutter, using a calibrated deposition rate of 0.107 ± 0.005 Å s−1. The
investigated range was 0.2 � dFe � 1.6 ML, which can also be viewed as a change from dilute
to continuous Fe layers.

The temperature-dependent magnetization was determined through the magneto-optical
Kerr effect. Passive shielding of the ambient magnetic field was obtained by three mu-metal
cylinders, resulting in a background field below 1 μT for the measurements of the remanent
magnetization. Magnetic field was applied with a pair of Helmholtz coils placed within the
magnetic shielding, allowing measurements in the field range ±8 mT. A detailed description of
the set-up can be found in [9].

In the critical region, the magnetization versus temperature can be described by a power
law

m ∝ (−t)β, (1)

where the exponent β reflects the magnetic dimensionality [10] of the transition. Here the
determination of the exponents is made using two methods. The first approach is a direct fitting
of the data using equation (1), in which a (Gaussian) distribution of the critical temperature (Tc)
is used to replicate the small finite-size tailing of the magnetization [11, 9]. The fitting yields
Tc via the relation t = (T − Tc)/Tc, as well as the exponent β . The lower bound of the fitting
range was fixed to t = −0.2. Typical broadening of σ ≈ 1 K is obtained, assuming a Gaussian
distribution of Tc. Using the mean value of Tc as derived from direct fitting, we plot the
magnetization versus t on a double logarithmic scale, from which the exponent β is extracted
as the linear slope; see figure 1. A true 2D XY system is critical for all temperatures below
Tc [12]; hence the linearized range is a direct measure of the extension of the 2D criticality.
A reduction of the extension of the critical region is observed with increasing Fe thickness for
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Figure 1. Magnetization versus reduced temperature. The straight lines in connection with each
dataset represent the slope in the fitted interval (between the two dashed lines), i.e., the exponent β.
The datasets are offset for clarity.

dFe � 0.8 ML, as seen in figure 1. Due to the reduction of the critical region the data for the
sample with dFe = 1.6 ML were fitted in the interval 0.02 � (−t) � 0.05, as compared to
0.02 � (−t) � 0.2 for all other samples.

All samples are characterized by a Kerr rotation of opposite sign with respect to that of
Fe [13, 14], which confirms that the measured magnetic signal is totally dominated by the
induced Pd magnetization.

Figure 2 shows Tc versus dFe together with a linear fit, yielding a ∼200 K ML−1 slope. The
increase of Tc with dFe is similar to that found in Co films deposited on Cu(100) substrates [16].
Apparently Tc varies close to linearly with dFe in the region 0.4 � dFe � 1.5 ML. This
behaviour is in stark contrast to the observed power-law behaviour of Tc versus thickness in
thin films, as reported by many authors [1, 17–19]. The changes in the ordering temperature
also provide information on the confinement of the Fe layers. If the Fe were evenly distributed
in the Pd layer, the ordering temperature would resemble that of a random alloy. The dashed
line in figure 2 shows the expected increase in Tc for a random distribution of Fe, using the
data from [15]. These results were confirmed by determination of the ordering temperature of
Fe/Pd alloy films with different Fe concentrations. The stronger increase of Tc for the ultrathin
samples therefore highlights the influence of the spatial distribution of the Fe atoms in the Pd
matrix. In other words, if the intermixing of Fe in Pd were complete, the increase of Tc with
dFe would be the same as that shown by the dashed line in figure 2. Additional confirmation
of the confinement of the Fe layers was obtained by x-ray analysis of both the actual films and
Fe/Pd superlattices grown in the same system under identical conditions.

Figure 3 shows the exponent β versus dFe for all samples, as extracted by the two methods
described above. When dFe is below 0.5 ML the magnetic dimensionality is clearly 2D XY -
like with β in the range 0.21–0.26 [20]. At thicknesses larger than 0.5 ML, β increases
with increasing dFe, reaching typical 3D values at around 1 ML. The transition from 2D to
3D magnetic ordering happens over a minute interval in dFe, ∼0.5 ML. In comparison, Fe
layers in, for example, superlattice structures of Fe and V are non-magnetic up to thicknesses
≈1.7 ML [9]. Also, a 3 ML Fe film, sandwiched between V layers, displays 2D magnetic
behaviour, marked by an exponent β ≈ 0.23 [21].

The observed crossover in dimensionality, starting at dFe as low as ≈0.5 ML, highlights the
importance of the induced moment in Pd when defining the effective magnetic thickness. For
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Figure 2. Tc versus dFe in this study. The full line represents a linear fit to the data with a slope
∼200 K ML−1. The dashed line represents the increase of Tc for an Fe–Pd alloy, the slope being
∼85 K ML−1. The alloy data are from [15].

Figure 3. Exponent β versus dFe for all samples in this study, as determined by direct fitting and by
double logarithmic plotting. The dashed horizontal lines represent β of the 2D XY , 3D Ising, and
3D Heisenberg models. The solid line serves as a guide to the eye. Typical uncertainties in β and
thickness are indicated.

comparison, Li and Baberschke and later Huang et al determined the dimensionality crossover
in Ni films on Cu and W substrates [1, 2] to be around 5–7 ML. Based on this comparison it is
likely that the dimensionality crossover found here must be governed by the induced moment
in Pd.

To explore the underlying causes for the changes in the dimensionality, we calculated
the Fe-induced magnetic profile. The calculations were performed using a spin-polarized
interface Green’s function technique, based on the linear muffin-tin orbitals method within
the tight-binding, frozen core and atomic sphere approximations, as developed by Skriver and
Rosengaard [22]. The Fe–Pd samples were treated locally as an alloy within the coherent
potential approximation [23–25]. Convergence was ensured for all calculations both with
respect to total energy and k-space sampling. We found that 528 k-points in the irreducible
part of the Brillouin zone were sufficient to obtain convergence in all the cases considered. The
crystal structure was assumed to be fcc with the lattice constant of bulk Pd.
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n

Figure 4. Calculated decay of the magnetic moment with increasing distance from the centre Fe
layer (layer ‘0’) for dFe = 0.6 and 1.0 ML. The barsrepresent the distribution of the Fe layer used
in the model. Inset: occupation number of magnons in the out-of-plane direction, at Tc, versus dFe

for the four lowest magnon modes.

(This figure is in colour only in the electronic version)

To include structural imperfections such as atomic steps and interdiffusion in the
theoretical analysis, the Fe layers are treated as an alloy. This approach decreases problems
associated with interference terms in the calculations, arising from the finiteness of the
structures. The spatial extent of the interface alloy at an A/B interface in a sample can be
described by a Gaussian distribution function with standard deviation �. Since the actual
distribution is unknown it is reasonable to assume a Gaussian form based on the central limit
theorem. The layer-dependent concentration profile around the A/B interface is obtained as
an integral over this distribution. The total concentration profile of the trilayer is obtained as a
sum over the A/B and B/A interface profiles in the sample; for more details see [26] and [27].

The results are illustrated in figure 4, in which the moment at different distances from the
central magnetic Fe layer, denoted as layer ‘0’, for dFe = 0.6 and 1.0 ML is plotted. The
magnetization profiles are calculated using � = 1.0 ML. The moment of the Fe-containing
layer increases, as expected, with increasing Fe content. The increase in Tc with increasing
amount of Fe is thereby understandable as resulting from an increase in the effective magnetic
coupling. Thus, a conceptual picture of the increasing Tc emerges; however, the results do
not yield any understanding of the dimensionality crossover in the actual thickness range. The
magnetic profile appear to be rather insensitive to the amount of Fe. To understand this, we
need to discuss how the amplitude and the extension of the magnetic profile affect magnetic
excitations.

The different components of the magnetic excitations may be analysed within a simple
quantum well model, based on the ideas behind the anisotropic Heisenberg model. The main
idea is based on the separation of the in-plane (XY ) and the out-of-plane (Z ) contributions to
the magnetic excitations. The spatial confinement (see figure 4) in the Z -direction will lead to
discrete energy levels of the magnetic excitations (magnons) with relatively high energy levels
as compared to the XY modes. The dimensional crossover can be regarded as reflecting the
relative population of these principal modes in the vicinity of the ordering temperature. For
thicknesses below dFe ≈ 0.4, the contribution from Z -magnon modes would be minute up to
Tc, resulting in 2D XY -like behaviour. Consequently, the increase in Tc with increasing dFe

allows the population of Z -magnon modes, eventually resulting in 3D-like behaviour.
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The main concern here is therefore to explore the changes in the contribution of the
Z -magnon modes to the magnetic excitations of the samples with different Tc. Thus, the
probability of the excitation of modes in the Z -direction will serve as a marker for the
dimensionality of the transition. We use the fact that Tc ∝ dFe and set the effective width
of the quantum well, somewhat arbitrarily, to W = 11 ML, since only within the central
∼11 ML is there a noticeable difference between samples with different dFe. The energy
levels are then given by En ∝ k2

n, where n is the quantum number, kn = (nπ/W ) is the
wavevector and the available energy is kBTc. E ∝ k2 is a valid approximation for small k
of the common E ∝ [1 − cos(ka)] expression for magnon dispersion. The proportionality
constant is determined by the spin-stiffness of the magnetic layers. In these samples, both
the local concentration of Fe and the magnetic moment vary with position, which makes the
modelling of the spin-stiffness non-trivial to implement. We have chosen to approximate the
varying spin-stiffness with a constant value, calculated by fixing the atomic magnetic moment
of Pd locally to 0.1 μB. Thereafter we calculated the spin spiral spectrum and extracted the
spin-stiffness constant, using the method outlined by Rosengaard and Johansson [28]. Using
the energy relation for the magnons as calculated from the approximate stiffness constant and
the Planck distribution for the magnon occupation, we can express the population of the nth
mode, at Tc, as

Nn =
[

exp

(
Dπ2n2

W 2(a/2)2ckBdFe

)
− 1

]−1

≈
[

exp

(
0.188n2

dFe

)
− 1

]−1

, (2)

where D = 150 meV Å
2

is the spin-stiffness, a = 3.89 Å is the lattice constant for Pd, and
c = 200 K ML−1 is the proportionality constant for Tc versus dFe.

The resulting occupation numbers for the first four modes are shown in the inset of
figure 4. It may be seen that the dimensionality crossover of the induced moment can indeed
be understood as a relative increase of the population of the Z -magnon modes. Following
this line of argument, the Z -magnon modes are not populated up to Tc for small thicknesses,
yielding a 2D XY -like behaviour. With increasing Tc (dFe) the magnon modes start to become
significantly occupied, contributing to the overall magnetic excitations and eventually yielding
a shift of the effective exponent β .

As can be seen in the inset of figure 4, the occupation of higher-order Z -magnon modes
is negligible up to Tc when dFe is below a critical thickness (0.4 ML). Above this thickness
the occupation rises rapidly with increasing dFe, which can be interpreted as the beginning of
the dimensional crossover. Several magnon modes become accessible within a small thickness
range, which eventually leads to 3D behaviour of the magnetization. A qualitative picture of
the sharp dimensionality crossover at dFe = 0.5–1.0 ML is thereby obtained.

The ultrathin Fe layers used to polarize the surrounding Pd may be viewed as magnetic
δ-doping. The effects discussed here can therefore be viewed as the magnetic analogue to
electronic doping in semiconductors. The heuristically based explanation of the changes in
the induced magnetization is plausible and actually quite close to the model discussed in [29].
However, the simplifications we make in the theoretical treatment do not allow quantitative
analysis of many of the relevant parameters, such as the magnetic dispersion. Refinements of
the theoretical and experimental approaches are therefore required to explore the influence of
finite size and confinement on the ordering in finite systems.
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